Sturm-Liouville Matrix Equation for the Study of Electromagnetic-Waves Propagation in Layered Anisotropic Media

نویسندگان

  • René Pernas-Salomón
  • Rolando Pérez-Álvarez
چکیده

We obtain a Sturm-Lioville matrix equation of motion (SLME) for the study of electromagnetic wave propagation in layered anisotropic structures. Conducting media were taken into account so that ohmic loss is considered. This equation can be treated using a 4 × 4 associated transfer matrix (T) in layered anisotropic structures, where the tensors: permittivity, permeability and the electric conductivity have a piecewise dependence on the coordinate perpendicular to the layered structure. We use the SLME eigenfunctions and eigenvalues to analyze qualitatively the numerical instability (Ωd problem) which potentially affects practical applications of the transfer matrix method. By means of the SLME coefficients we show analytically that T determinant value can be used to keep a check on the numerical accuracy of calculations. We derive equations to analyze wave propagation in linear layered isotropic structures. The SLME approach is applied on two typical layered structures to verify theoretical predictions and experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion of Torsional Surface Wave in a Pre-Stressed Heterogeneous Layer Sandwiched Between Anisotropic Porous Half-Spaces Under Gravity

The study of surface waves in a layered media has their viable application in geophysical prospecting. This paper presents an analytical study on the dispersion of torsional surface wave in a pre-stressed heterogeneous layer sandwiched between a pre-stressed anisotropic porous semi-infinite medium and gravitating anisotropic porous half-space. The non-homogeneity within the intermediate layer a...

متن کامل

Effect of Initial Stress on Propagation of Love Waves in an Anisotropic Porous Layer

In the present paper, effect of initial stresses on the propagation of Love waves has been investigated in a fluid saturated, anisotropic, porous layer lying in welded contact over a prestressed, non-homogeneous elastic half space. The dispersion equation of phase velocity has been derived. It has been found that the phase velocity of Love waves is considerably influenced by porosity and anisot...

متن کامل

Influence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media

The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...

متن کامل

Numerical solution of the Sturm-Liouville problem by using Chebyshev cardinal functions

In this manuscript, a numerical technique is presented for finding the eigenvalues of the regular Sturm-Liouville problems. The Chebyshev cardinal functions are used to approximate the eigenvalues of a regular Sturm-Liouville problem with Dirichlet boundary conditions. These functions defined by the Chebyshev function of the first kind. By using the operational matrix of derivative the problem ...

متن کامل

Asymptotic distributions of Neumann problem for Sturm-Liouville equation

In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014